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Part 1 

  What is swarm intelligence 
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What is Swarm Intelligence 

  Definition 
  Intelligent behaviors from a large number (i.e., a 

swarm) of simple individuals 
  Collectively doing something seemingly “intelligent” 

or “useful” 
  Where no one of the individual can claim 

intelligence 
  So the intelligence is not in the composition of 

simple intelligences 
  Rather, intelligence “emerges” as a consequences of 

the interactions 
  Is a property of the system, not of its components 
  It is the system in its whole that does something 

intelligence 
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Where is Swarm Intelligence? 
  Actually, there are a number of systems which seems 

to exhibit swarm intelligence 
  Animal colonies and specifically 
  Insect colonies like ants, termites, and bees 
  Bacteria (e.g., the Dictostelyum), which appear able to 

act in a finalized way 
  The Brain: intelligence and mind arises form the 

interaction of simple neurons 
  The Cell: homeostasis and the capability of adapting and 

reproducing arise form protein interactions 
  Therefore 

  Swarm intelligence seems not to be an “accident” but 
rather a property of a variety of systems 

  Definitely, evolution has played an important role in this 
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The Concept of “Emergence” 

  The behavior of swarm intelligent systems if often 
said to be an “emergent behavior” 
  It does not arise from a rationale choice 
  It does not arise from an engineering finalized 

analysis 
  No one and nothing in the system says: I will do that 

because this will lead to a specific behavior of the 
system 

  So, intelligence seems to magically “emerge” 
  Clearly, emergence is in the eye of the 

observer 
  The individual in the system have no global 

perspective 
  They are not aware of what’s globally happening 
  They are not aware they are doing something 

intelligent 
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Self-Organization 
  The “intelligence” is observed in terms of some high-

level global scale organized behavior 
  Spontaneously emerged in the system 
  Spanning outside the typical local capability of sensing/

effecting of individuals 
  From Local to Global 

  Typically, in swarm systems, interactions and capability 
are local 

  Nevertheless, the behavior observed has some sorts of 
global organization 

  From order to disorder 
  Typically, a system may start in a very disordered state 
  And evolve in time to reach “order”, i.e., some global 

observable patterns of organization in structure and/or in 
activities 
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Swarms and Adaptivity 

  Swarm intelligence is often very adaptive 
  It can achieve self-organization independently 

of the contingencies of the environment 
  It can re-shape the global behavior to react to 

environmental dynamics 
  Without losing global organization, but rather 

having the system re-organize itself 
  In other words, swarm intelligent systems 

are adaptable to the context 
  They perceive somewhat changes in the 

context 
  And re-shape their behavior accordingly 
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Mechanisms of Swarm Intelligence 
  We can characterize a swarm system in terms of  

  Individuals, interactions, environment 
  Activities of individuals 

  Perceive local properties of the environment 
  React on the basis of simple perception-reaction models (e.g., 

reactive agents) 
  Affect somewhat the properties of the environment 
  Move in the environment 
  Very often, act based on some stochastic parameter  

  Interaction mechanisms 
  Typically, interactions are not direct communications 
  But are indirect forms of interactions 
  I “smell” the environment (“stigmergy”) 
  I “see” what the others are doing (“behavioral interactions”) 

  Environmental mechanisms 
  The environment in which individuals live may contribute with its 

own activities 
  May possess its own properties 
  May have active processes to dynamically vary this properties 
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The Role of Feedbacks 
  The capability of self-organization in swarm system 

includes contrasting phenomena of feedbacks 
  Positive feedback: re-enforcement or activation 

  The behavior of an individual (or its effect in the 
environment)  

  May solicits other individuals to do the same 
  So that several individual starts behaving in a seemingly 

organized way  
  Negative feedback: control or inhibition 

  The behavior of some individuals, or processes in the 
environment 

  May avoid that all individuals converge to the same 
behavior or to the same state 

  And avoid the system to reach a stable equilibrium 
  There is a continuous tension between re-inforcement 

and inhibition 
  And this is what actually happens in most known 

phenomena of self-organization, e.g., cellular automata, 
markets, complex networks, etc. 
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The Role of Randomness 
  Often, swarm intelligent behavior rely on stochastic choices by 

its individuals 
  Individuals have a certain probability to behave in specific ways 
  The behavior of individuals is a balanced between a simple 

perception-reaction model and a random model 
  This enables  

  To reach self-organization form any initial configuration 
  To escape (as known from operations research) from local minima 

(e.g. to reach the optimal self-organization) 
  To react to changed situations in the environment 

  The latter point is very important: 
  Together with feedbacks, it enables the system to exhibit adaptivity 
  No configuration is the final one 
  Randomness enables exploring always some alternative 

  For instance, when the conditions change and a reached form of 
self-organization is no longer satisfying 
  Randomness ensure the better solution will be found 
  Positive feedback ensure that will become the new configuration 
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The Role of Mass 

  For swarm intelligent system to achieve 
their global self-organization 
  In a robust and adaptive way 

  It is necessary to have large masses of 
agents 
  To explore a search space in full 
  To tolerage local faults (single components do 

not matter!) 
  To enable adaptivity 

  While a large percentage of components are 
doing their work, the other may be “lost” in 
searching alternate solutions 
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Swarm Systems vs. Multiagent 
Systems 

  Actually, swarms are ensembles of simple agents, i.e., multi-
simple_agent systems 
  Components are autonomous, i.e., they act based on local 

decisions 
  Components are situated in an environment 
  They interact with each other (via the mediation of the 

environment – stigmergy) 

  However,  the basic philosophy is somewhat different from 
that of multiagent systems 
  The accent is more on the ensemble than on the rationality of 

agents 
  Agents may be irrational or probabilistic 

  There is much more emphasis on the role of the environment 
  Not simply a way to get information 
  But a way to coordinate with each other 
  And the environmental processes counts 

  So, given that most modern distributed systems can be 
assimilated, modeled, as agents, swarm intelligence may have 
some relevance to them 
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Why is Swarm Intelligence of Use in 
Modern Distributed Systems? 

  Swarm intelligence systems obtain “useful behaviors” with 
  Very simple components 
  Distributed in an environment 
  Interacting in a local way 
  Nevertheless exhibiting global organization of activities 
  And being capable of adaptation 

  When transporting this into modern distributed systems, we 
would have 
  Simple computational components (thus suitable for 

implementation in a resource effective way) 
  Interacting with local components (thus avoiding high 

communication costs)  
  And achieving global application goals in a very effective 
  And adaptable way 

  These are indeed valuable properties to enforce in modern 
distributed systems! 

  Still, no free lunch! There is a price to pay in 
  losing certainty of outcome (the final configuration cannot be exaclty 

predicted) 
  Wasting resources in a mass of agents doing nothing apparently 

useful 
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Swarm vs. Individual Intelligence 
  Not only “stupid” animals exhibit swarm intelligence 
  Sometimes, even mammals or humans do it 

  Castori does water walls on river 
  Buffalos “flock” in the wild 
  Wolves surround a prey 
  Humans forms global self-organized patterns when walking 

  This implies that sometimes 
  The power of interactions overcomes the power of 

individuals 
  Whatever the reason an individual act in a specific way 
  What matter is its interactive behavior, i.e., the way it act 

and interact in the system 
  There is also a role for stochastic variables 

  Since swarm intelligence in “stupid” animals is subject to 
probabilistic choices by animals 

  The capability for an “intelligent” animals to do rational 
actions different from those of the group may be perceived 
as a sort of probabilistic behavior  
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Part 2 

  Examples and Applications of 
Swarm Intelligence 
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Examples of Swarm Intelligence 

  Let us analyze several examples of swarm 
intelligent systems 
  And unfold the exploited mechanism 

  In particular, we analyze the following 
phenomena: 
  Firefly synchronization 
  Ant sorting 
  Ant foraging 
  Termites nest building 
  Birds’ and Fishes’ Flocking 

  Most examples are simulated using the “NetLogo” 
simulation system, version 2.1 
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Firefly Synchronization 
  Some species of firefly (e.g., in North America) 

blink in a synchronized way 
  How can they agree to that 
  Where there is not explicit agreement 
  And there is not explicit leader? 

  Related problems in science and nature 
  Synchronized clapping in humans 
  Heart beating  
  Firing neurons in brain 
  Synchronous pendulum 
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Mechanisms of Firefly Synchronization 
  Each firefly flashes with its own 

frequency 
  It is like a sort of triangular excitation 

function that, once reaching an 
excitation threshold, make the firefly 
flash and them get to zero 

  But it perceives the local flashing of 
nearby firefly (or perceive flashing 
with a distance decreasing intensity) 

  Feedback mechanisms 
  If the flashing of other fireflies exceed 

a given luminosity threshold 
(reinforcement feeedback) 

  And the firefly that perceive it still not  
already excited enough (control 
feedback!) 

  It reset its excitation to zero, as if it 
had just flashed  

  See the NetLogo Simulation 

Time 

Excitation 

Flash! 
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Firefly Synchronization: The Algorithm 
Int excitation =0;!
Int perceived;!
Const excitationthreshold = ET;!
Const sensibilitythreshold = ST;!
Const noactthreshold = NAT;!

DO FORALL (t)!
!excitation++;!
!perceived = perceive();!

!if(excitation<ET && perceived > ST) !
! !flash();!
! !excitation=0;!
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Firefly Synchronization: Applications 

  To achieve a sort of cost effective global 
synchronization of activities in a distributed system 
  Where each component (e.g., a peer or a sensor in a 

network) has its own clock 
  And where clocks, even if a priori synchronized, may have 

drifts 

  Important for modern distributed systems 
  In “large” networks”, the process may 

  Take a long time to converge 
  Have some mis-synchrony due to delays in signal 

propagation 
  However: 

  The convergence process may be much faster in a small 
world 

  And the mis-synchrony may be notably contained!  
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Aggregation of Slime-Mold Cells 
(Dictyostelium & Company) 

  Such cells, sorts of amoebas, spend most of their lives as 
individuals 
  Wandering around in fluids 
  Or, in the case of their fungi companion, wandering on grasses 

and trees 
  When food is scarce, they aggregate into a sort of unicellular 

organism 
  With more movement capability 
  With more chances to get food 

  How can they agree to get together? 
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Mechanisms of Aggregation 
  In specific environmental conditions 

  Each cell start emitting a sort of chemical pheromone 
   And start “smelling” such pheromones, being attracted in the 

direction of the greatest scent 
  The trivial results is that 

  Clusters start forming 
  The largest a cluster, the more pheromones it emits (positive 

reinforcing feedback) 
  Pheromones diffuse in the environment 

  Giving the chance to far cells to sense the pheromone gradients 
  Phoeromones evaporates in time 

  Limiting the dimension of clusters and the spatial extent from 
which cells can be aggregated  

  See the NetLogo simulations 
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Slime-Mold Aggregation: The Algorithm 

DO FORALL (t)!
!if(food_is_enough)!
! !move(random_direction);!

      else!
! !emit_pheromone();!
! !move(direction_of_scent_gradient);!
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Slime-Mold Aggregation: Applications 

  Per se, the phenomena has several application 

  Coalition formation algorithms 
  Group of agents needed to group together to solve 

a complex problem that a single agent per se is not 
able to form 

  The algorithm can be used to recruit agents able to 
perform the task 

  Community formation 
  By spreading different types of pheromones 

depending on interest, it is possible to dynamically 
form networks of agents grouped by “interest”, i.e., 
communities 
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Ant Sorting 
  Ant nests are very 

organized 
  Ants put in different places 

eggs, larvae, deaths, foods 
  Still, no ant knows the 

“map” of the nest 
  No a priori decision has 

been made on where to 
put different kinds of items 

  The ants do not directly 
communicate with each 
other! 

  So, how can such kind of 
very organized behavior 
emerge? 

  Similar behaviors in bees, 
and in most social insects  
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Mechanisms of Ant Sorting 
  Here’s how ant sort items in their nests 

  Wander randomly around the nest (a sort of Brownian motion, 
where the direction is instantaneously chosen at random) 

  Sense (“smell”) nearby objects 
  The ant has a very short term memory and can remember what it 

has seen in the past few steps 
  If the ant is not carrying anything, get an object with a certain 

probability 
  The probability of getting something decreases if it has 

encountered similar object earlier 
  If the ant is carrying something, drop it with a certain 

probability 
  The probability increases if the ant has encountered similar objects 

earlier 

  Eventually, all objects of same type will end up being in 
the same pile 

  See the NetLogo simulation 
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Ant Sorting: The Algorithm 
Int memory[10]; // remember 10 steps!
Boolean carry_object;!
Int k1 // probability of getting an object!
Int k2 // probability of dropping an object!

DO FORALL (t)!
!move(choose_random_direction());!

      !perceived_item = perceive();!
!memory[t%10] = perceived_item;!

       if (!carry_object)!
             // probabilistic action!
        // based on f, the number of object of same kind!
        // stored in memory!

!       !get = probability(k1/(k1+f));!
!       // get the object!

  ! !if (get) carry_object=true;!
       if (carry_object)!
              //probabilitic action!
             !get = probability(f/(k2+f));!
  ! !// drop the object!

! !if (get) carry_object=false;!
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Mechanisms of Ant Sorting 
  Ants random motion 

  The fact that ants wander in a sort of Brownian motion 
will make them explore the whole nest, after or before 

  If there are items around, the ant will get to them 
  Here, the presence of probabilistic behavior is very 

important! 
  Items pile 

  The greater a pile of items (i.e., the more the ant has 
wandered around it), the less the probability an ant will 
get something from it (negative feedback) 

  The greater a pile of items (i.e., the more the ant has 
wandered around it), the greater the probability that an 
ant will drop a similar item there (positive feedback) 

  The co-presence of positive and negative feedback is 
very clear here! 
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Ant Sorting: Why it Work (2) 
  Eventually 

  Large piles will get larger 
  Small piles or individual items will be get by ants and 

will be moved by a larger pile 
  The key parameter is the “memory” of the ants, which 

influence the capability of ants of evaluating the size of 
piles 

  If the has low memory, the sorting will end up in a 
partial one, with several medium-size piles co-existing  

  In general, the result is a set of large piles all with 
the same types of items 

  Adaptability 
  The system works independently of the nest structure, 

independently of the initial position of items, 
independently of the actual number of ants 

  The system continue work even if we manually re-
arrange things  
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Ant Sorting: Applications 
  The capability of sorting items in a distributed setting 

may have some useful applications 
  As a way to group files by characteristics in file system 

search 
  As a way to implement “by subject” searches in Web 

search engines 
  As a way to distributed and search files in P2P systems 

  For instance, with reference to P2P systems 
  We could have sorts of digital “Java” ants that move 

randomly in the P2P network 
  Get files and transfer them (or simply get references to 

these files) to other places in the network 
  The result is that all files will be grouped “by category”,    
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Ant Foraging 
  When ants go out of the nest 

looking for food 
  How can they find the food? 
  How can ants altogether get to the 

same source of food? 
  How can they all avoid obstacles? 
  How can they all get back to the 

nest? 
  What is found is that, surprisingly 

  Most of the ants find food 
  Most of them will find the shortest 

path from food to nest and viceversa 
  They avoid obstacles, and find the 

shortest path even in the presence 
of obstacles 

  When a new shortest path is 
created, they will find it 

  When food finishes, the colony start 
looking for alternate sources  

See also the movies 
(courtesy of Marco Dorigo) 
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Ant Foraging: How it Works (1) 
  Ants go out of the nest and start wander around (Brownian 

motion) 
  Independently form each other 
  Eventually, they will explore all the space around the nest 
  Turning around obstacles 
  The more ants, the more fast and larger will be such exploration (the 

mass counts!) 
  Eventually, one ant will find some food 

  It will pick up the food 
  And will start trying to get back to the nest, randomly, until the nest 

is reached and the food dropped out 
  Ants who carry food 

  Will deposit a chemical substance (pheromone) that diffuse around 
  All ants, independently of whether they carry food or now, tends 

to be attracted by pheromones 
  In general all ants wander selecting the direction randomly 
  But the scent of pheromones tends to give higher probability to 

choose a direction towards increasing pheromones concentration 
(climbing the hill of pheromone gradients) 
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Ant Foraging: How it Works (2) 
  Pheromone spread by ants diffuse 

  This ensure that nearby ants will start sensing 
pheromones and will be attracted by it 

  Thus, when an ant has found some food, other ants 
that are looking for food can 

  Follow the pheromone path left by that ants and 
leading to food 

  And eventually reach food 
  How can ants get home? 

  From food to nest, ants will leave a path 
  Thus, once an ant has reached home, there will exists 

a path from home that other ants will follow to get 
home 

  And other ants exiting for food will follow to find food  
  But how can this path be made the shortest one? 
  What happens when food finishes or when an obstacle 

appear? 
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Mechanisms of Ant Foraging 
  Pheromone spread by ants evaporate 

  The pheromone path does not last forever 
  It gradually lose its strength as time passes 

  This is very important because 
  When food is finished, no more ant will leave pheromone nearby 

  The path evaporates 
  And ants will wander to other directions to find new food sources 

  When an obstacles appear 
  The ants will be forced to circumvent it, creating a new path 
  The old one will evaporate 
  And not ants will any longer be directed towards the obstacles 

  Pheromone evaporation is thus very important to promote 
adaptivity! 

  In addition, pheromone evaporation is (together with 
randomness) what enables finding shortest paths! 
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Finding Shortest Paths 
  When an ant tries to get home with food 

  It wanders randomly 
  And leave a path of pheromones to be followed by 

other ants 
  Thus, eventually, there is a path form food to home 

  However, ants select a path only with high 
probability, not always 
  Thus, ants with food will create alternate, possibly 

short-cut path around the main path to be followed 
by other ants 

  Due to evaporation 
  The ants that follow the longer path, will take a 

longer time, and their track will evaporate sooner 
  Less probability to be followed 

  The ants that follow the shorter track will leave a 
more “fresh” track of pheromones 

  More probability to be followed 

  Eventually, the process converges to a shortest 
path 

Food 

Nest 

Alternate 
path 
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Positive and Negative Feedbacks 
in Ant Foraging 

  Mechanisms of positive feedback (re-enforcement) and 
negative feedback (control) feedbacks are available in ant 
foraging 

  Positive Feedback 
  Pheromones attract more ants 
  Get them to food 
  And make them leave pheromones at their turn 
  This enables the creation of stable path 
  Without such re-enforcement, path would not be stable 

enough to attract several ants 
  Negative feedback 

  Pheromone evaporation ensure that no path will last forever 
  This ensure that useless path will disappear and that the 

system can adapt to changed situation (forgetting is as 
important as remembering!)  

  Also, together with randomness, ensure that all possible 
solutions, e.g., the whole search space, are explored in any 
case 

  E.g., that the shortest path is found 
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An Alternate Approach: 
Double Pheromone Types  

  An alternative (not corresponding to real-world ants, 
but interesting) is that ants can emit two types of 
pheromones 
  Nest pheromones, when they have left the nest and look 

for food 
  Food pheromones, when they have found food 

  This possibility ensure that  
  Once an ant has found some food 

  It can start smelling the nest pheromones  
  It is expected that there will be a higher concentration of 

nest pheromones in the direction to home 
  So that the ant can more easily find a path back home 

  This is more effective and it is the one which is usually 
implemented in systems mimicking ant foraging 
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Ant Foraging: The Algorithm 
Boolean carry_food;!
Int food_pheromone_gradient, nest_pheromone_gradient;!

DO FORALL (t)!
  if(!carry_food)!
        emit_nest_pheromone();!

!food_pheromone_gradient = sense_food();!
        if(food_pheromone_gradient)!

! !move(choose_preferential_direction());!
      !else!

! !move(choose_random_direction());!
  if(carry_food)!
 !emit_food_pheromone();!

!nest_pheromone_gradient = sense_nest();!
        if(nest_pheromone_gradient)!

! !move(choose_preferential_direction());!
      !else!

! !move(choose_random_direction());!
  if(at_nest) carry_food=false;!
   if(at_food) carry_food=false; 
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Ant Foraging Applications: 
Ant Optimization 

  Optimization in Networks (Dorigo et al., 1997) 
  TSP problem: have digital ants “live” on the graph, 

and have them explore the graph looking for paths 
  By properly tuning the parameters, the ants will find 

(if not the optimal) very nearly optimal paths 
  With performances that can be better to those of 

traditional approaches 
  The same approach can be mapped into other 

classical optimization problems  

Ant simulation 
Tabu search 

Simulated annealing 
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Ant Foraging Applications: 
Routing in Networks 

  Routing in networks (White and Pagurek, 1997) 
  Other than the capability of finding shortest path, one could exploit the 

capability of dynamic adaptation to discover routing paths in networks 
  Map components of ant foraging in components of a data network 

  Environment = network 
  Nest pheromones gradients = Routing tables 
  Ants with food (backward ants) = data packets 
  Ants without food (forward ants) = active controllers of the routing 

system, sorts of simple mobile agents, spread by nodes as normal 
data packets but only in charge of exploring the space and of creating 
pheromones trails towards home 

  Food source = sender of data packet 
  Nest = receiver of data packet 

  Of course, parameters needs to be carefully evaluated via 
simulations 
  Tuning of pheromone evaporation and diffusion rate (they must be 

stable enough but must propagate quite quickly) 
  Tuning of number of explorer ants 

  But it works!  
  Di Caro and Dorigo shows it can outperform Internet in the presence 

of congestions  
  And it is especially suited for mobile ad-hoc networks 
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Ant Foraging Applications: 
Pervasive Computing 

  To implement swarm intelligence systems, there is in 
general need of something acting as environment 
  The Internet, a P2P network, a sensor network 

  How can we use swarm intelligence for everyday 
environment to enforce pervasive computing? 

  The Idea (Mamei and Zambonelli, 2005) is to deploy 
pheromones on RF-ID tags 
  RF-ID tags could be already in the environment 
  Or they could be spread by explorer robots 
  Mobile devices (e.g., PDA, laptops, smart phones) could 

“sense” the pheromones by reading RF-ID tags or could 
leave pheromones by “writing” them 

  This could have a lot of applications 
  Finding objects and people 
  Orchestrating team movements 
  Act as sort of “environmental” memory 
  Or simply used as a mean to promote swarm coordination in 

swarms of mobile robots 
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Ant Foraging Applications: 
P2P Computing in Anthill 

  Ant foraging – and the creation of pheromones trials, 
can be effective alternative to find information in P2P 
networks 

  Anthill system (Montresor and Babaoglu, 2002) 
  An ant-based P2P system for service oriented P2P 

computing 
  When a user needs a service (possibly composed of 

several sub-services) or some information in the P2P 
network 
  It launches a number of ants in the network looking for the 

services 
  Once a service is found, ants leave pheromone paths to it 

  So, whenever other people has requested similar 
services, the pheromone trial may already exists  
  More requested services have re-enforced trials 
  Adaptivity in the case of service unavailability or faults 
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Ant Foraging Applications: 
Other Applications 

  Dynamic manufacturing scheduling 
(Holvoet, 2004) 

  Pattern detection in artificial vision 
(Parunak, 2000) 

  Motion coordination for unmanned 
vehicles (Parunak, 2003) 

  Extraction of information from large 
data warehouses  
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The Concept of Stigmergy 
  Stigmergy = signs + actions (Grassé, 1957) 

  In any foraging, as well as in slime-mold aggregation and in ant 
sorting 

  Interactions between agents occur indirectly via the environment 
  This is stigmergy in that 

  Agent have, via their actions, change the status the environment 
  This, in turn, affect the behavior of other agents 

  In particular, in the examples we have seen 
  Pheromones in ant sorting and in slime-mold aggregation 
  Perception of environmental situation in ant sorting  
  Indirect perception (via the environment) of other fireflies behaviors in 

firefly synchronization 

  This is something similar to what happens in shared dataspaces 
and tuple-based coordination in distributed systems 
  Stigmergy decouples interactions 
  Stigmergy, by definition, is context-awareness 
  Both of which are fundamental to enforce adaptivity 
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The Role of the Environment 

  The role of the environment is not merely passive 
  There are processes in the environment which are 

fundamental to support self-organization and 
adaptation 
  E.g., pheromone diffusion and evaporation 
  E.g. spreading of information (e.g., visual 

information in firefly synchronization) 
  In other words, self-organization needs to be 

actively supported by the environment 

  This somewhat resembles the concept of 
“programmable tuples space” (Omicini, 1998) 
  Which encode the laws of coordination 
  And provides for true decoupled and adaptive 

coordination 
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Swarming in Humans:  
Emergent Footpaths 

  Imagine a park with 
stone footpaths 
  That should discourage 

you to walk on grass ;-) 
  But are traced with 

absurd geometries 
  You will definitely start 

“cutting the corners” 
  This will make the grass 

signed 
  Inviting other people to 

walk in 
  Until a clear spontaneous 

footpath emerge, and it 
will be the shortest path 

  If a path go to disuse 
  Grass will grow again (as 

in pheromone 
evaporation) 
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Another Interesting Example: 
Nest Building in Termites 

  Not many actual 
applications in 
distributed systems 
(maybe in self-
assembly?) 

  But a very interesting 
example of swarm 
architecture 

  A complex artifact 
built by “stupid” 
entities 
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Nest Building in Termites: 
How it Works 

  Termite start getting and 
carrying pieces of mud 

  And drop it marking it with 
pheromones  
  Either randomly in some place 
  Or where it sense a higher 

concentration of pheromones 
  i.e., above other pieces of mud, 

thus creating growing piles of 
mud 

  When  there are close piles of 
mud, termites are more 
attracted between the two 
  And deposit the mud on the pile, 

with a tendence of the pile to 
approach each other 

  Until an arch form 
  And so on, recursively, the nest 

grows a floor over the other… Time 
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Other Examples  

  A lot of other examples may be provided 
  Flocking in birds and fish, and other social 

animals 
  Wolves surrounding a prey and ants 

collectively carrying big objects 
  Morphogenesis and self-assembly (other than 

the simple model of slime-molds) 
  With relevant applications in pervasive 

computing and robotics 
  This can be better presented when talking 

about field-based coordination 
  A specific type of stigmergic interaction 
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Before Reaching the End: 
Swarms and the Mind 

  So, from what said, we have clear in minds that swarms are not 
intelligent 
  They only seems intelligent 
  There is not a “collective mind” in ant colony… 

  So, when we consider a system of simple electrical perception-
reaction electrical components 
  Connected in some sorts of directed lattice (or small world network) 
  And exhibiting patterns of synchronization, of coordinated activity 
  We would never say that there is a collective mind there…but… 

  Isn’t the above exactly a brain simply evolved by nature?  
  So, what is “intelligence” after all? 
  What is “mind” 
  Is mind only a specific form of “swarm intelligence” 
  So, if we have a “mind”, and we know we have, why couldn’t ant 

colonies have one? 

  Sorry, this is getting philosophy and not computer science… 
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Conclusions and Open Issues 
  Many natural systems exhibit seemingly intelligent behaviors 

  Global adaptive self-organized behavior 
  Achieving some global goals 
  Despite very simple components 

  The lessons of these natural systems can be effectively 
transposed to distributed systems 
  To obtain a variety of applications 
  Robust, adaptive, and resource effective 

  Other mechanisms exploited by natural systems, not analyzed 
in detail here, may be effectively exploited as the basis to 
enforce swarm intelligence 
  E.g., fields, chemical gradients, etc. 
  Will see some of these in other lectures 

  Still, the problem of engineering a swarm system is open 
  General methodology to design swarm intelligent systems 
  Other than that of reverse engineering existing ones 
  Evolutionary approaches to evolve “intelligent” populations 
  These will be the subject of another lesson… 


